Wednesday, 10 September 2008

Design

Design
The LHC is the world's largest and highest-energy particle accelerator.[1] The collider is contained in a circular tunnel, with a circumference of 27 kilometres (17 mi), at a depth ranging from 50 to 175 metres underground.[2] The 3.8-metre (150 in.) diameter, concrete-lined tunnel, constructed between 1983 and 1988, was formerly used to house the Large Electron-Positron Collider.[3] Mostly in France, it crosses the border between Switzerland and France at four points. Surface buildings hold ancillary equipment such as compressors, ventilation equipment, control electronics and refrigeration plants.
The collider tunnel contains two adjacent parallel beam pipes that intersect at four points, each containing a proton beam, which travel in opposite directions around the ring. Some 1,232 dipole magnets keep the beams on their circular path, while an additional 392 quadrupole magnets are used to keep the beams focused, in order to maximize the chances of interaction between the particles in the four intersection points, where the two beams will cross. In total, over 1,600 superconducting magnets are installed, with most weighing over 27 tonnes. Approximately 96 tonnes of liquid helium is needed to keep the magnets at their operating temperature of 1.9 K, making the LHC the largest cryogenic facility in the world at liquid helium temperature.[4]

Superconducting quadrupole electromagnets are used to direct the beams to four intersection points, where interactions between protons will take place.
Once or twice a day, as the protons are accelerated from 450 GeV to 7 TeV, the field of the superconducting dipole magnets will be increased from 0.54 to 8.3 T. The protons will each have an energy of 7 TeV, giving a total collision energy of 14 TeV (2.2 μJ). At this energy the protons have a Lorentz factor of about 7,500 and move at about 99.999999% of light speed. It will take less than 90 microseconds for a proton to travel once around the main ring – a speed of about 11,000 revolutions per second. Rather than continuous beams, the protons will be bunched together, into 2,808 bunches, so that interactions between the two beams will take place at discrete intervals never shorter than 25 ns apart. When the collider is first commissioned, it will be operated with fewer bunches, to give a bunch crossing interval of 75 ns. The number of bunches will later be increased to give a final bunch crossing interval of 25 ns.[5]
Prior to being injected into the main accelerator, the particles are prepared by a series of systems that successively increase their energy. The first system is the linear particle accelerator Linac 2 generating 50 MeV protons, which feeds the Proton Synchrotron Booster. There the protons are accelerated to 1.4 GeV and injected into the Proton Synchrotron (PS), where they are accelerated to 26 GeV. Finally the Super Proton Synchrotron (SPS) is used to further increase their energy to 450 GeV before they are at last injected (over a period of 20 minutes) into the main ring. Here the proton bunches are accumulated, accelerated (over a period of 20 minutes) to their peak 7 TeV energy, and finally stored for 10 to 24 hours while collisions occur at the four intersection points.[6]
The LHC will also be used to collide lead (Pb) heavy ions with a collision energy of 1,150 TeV. The Pb ions will be first accelerated by the linear accelerator Linac 3, and the Low-Energy Injector Ring will be used as an ion storage and cooler unit. The ions then will be further accelerated by the PS and SPS before being injected into LHC ring, where they will reach an energy of 2.76 TeV per nucleon.

No comments: